Cotilting sheaves on Noetherian schemes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420963" target="_blank" >RIV/00216208:11320/20:10420963 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rnwdPd22ub" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rnwdPd22ub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00209-019-02404-8" target="_blank" >10.1007/s00209-019-02404-8</a>
Alternative languages
Result language
angličtina
Original language name
Cotilting sheaves on Noetherian schemes
Original language description
We develop theory of (possibly large) cotilting objects of injective dimension at most one in general Grothendieck categories. We show that such cotilting objects are always pure-injective and that they characterize the situation where the Grothendieck category is tilted using a torsion pair to another Grothendieck category. We prove that for Noetherian schemes with an ample family of line bundles a cotilting class of quasi-coherent sheaves is closed under injective envelopes if and only if it is invariant under twists by line bundles, and that such cotilting classes are parametrized by specialization closed subsets disjoint from the associated points of the scheme. Finally, we compute the cotilting sheaves of the latter type explicitly for curves as products of direct images of indecomposable injective modules or completed canonical modules at stalks.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Zeitschrift
ISSN
0025-5874
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
296
Country of publishing house
DE - GERMANY
Number of pages
38
Pages from-to
275-312
UT code for WoS article
000563560500015
EID of the result in the Scopus database
2-s2.0-85075357913