All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cotilting sheaves on Noetherian schemes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420963" target="_blank" >RIV/00216208:11320/20:10420963 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rnwdPd22ub" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rnwdPd22ub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00209-019-02404-8" target="_blank" >10.1007/s00209-019-02404-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cotilting sheaves on Noetherian schemes

  • Original language description

    We develop theory of (possibly large) cotilting objects of injective dimension at most one in general Grothendieck categories. We show that such cotilting objects are always pure-injective and that they characterize the situation where the Grothendieck category is tilted using a torsion pair to another Grothendieck category. We prove that for Noetherian schemes with an ample family of line bundles a cotilting class of quasi-coherent sheaves is closed under injective envelopes if and only if it is invariant under twists by line bundles, and that such cotilting classes are parametrized by specialization closed subsets disjoint from the associated points of the scheme. Finally, we compute the cotilting sheaves of the latter type explicitly for curves as products of direct images of indecomposable injective modules or completed canonical modules at stalks.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Zeitschrift

  • ISSN

    0025-5874

  • e-ISSN

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    296

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    38

  • Pages from-to

    275-312

  • UT code for WoS article

    000563560500015

  • EID of the result in the Scopus database

    2-s2.0-85075357913