Entropy numbers of finite-dimensional embeddings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422174" target="_blank" >RIV/00216208:11320/20:10422174 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/20:00343524
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BXl5m-G8IT" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BXl5m-G8IT</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.exmath.2019.04.001" target="_blank" >10.1016/j.exmath.2019.04.001</a>
Alternative languages
Result language
angličtina
Original language name
Entropy numbers of finite-dimensional embeddings
Original language description
Entropy numbers and covering numbers of sets and operators are well known geometric notions, which found many applications in various fields of mathematics, statistics, and computer science. Their values for finite-dimensional embeddings id : l(p)(n) -> l(q)(n), 0 < p, q <= infinity, are known (up to multiplicative constants) since the pioneering work of Schutt in 1984, with later improvements by Edmunds and Triebel, Kuhn and Guedon and Litvak. The aim of this survey is to give a self-contained presentation of the result and an overview of the different techniques used in its proof. (C) 2019 Elsevier GmbH. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00580S" target="_blank" >GA18-00580S: Function Spaces and Approximation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Expositiones Mathematicae
ISSN
0723-0869
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
319-336
UT code for WoS article
000577538100003
EID of the result in the Scopus database
2-s2.0-85064241898