Maximal volumes of n-dimensional balls in the p-norm
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423391" target="_blank" >RIV/00216208:11320/20:10423391 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wxhZH-mduX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wxhZH-mduX</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00013-019-01394-7" target="_blank" >10.1007/s00013-019-01394-7</a>
Alternative languages
Result language
angličtina
Original language name
Maximal volumes of n-dimensional balls in the p-norm
Original language description
We revisit the well-known problem of determining the dimension in which a unit ball has maximal volume. We consider balls with respect to the p-norm with arbitrary radius. Given a fixed p, we find all radii for which the volume is maximized in dimension n. Conversely, for a fixed radius, we find all values of p for which the volume is maximal in dimension n.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archiv der Mathematik
ISSN
0003-889X
e-ISSN
—
Volume of the periodical
114
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
8
Pages from-to
305-312
UT code for WoS article
000513451200007
EID of the result in the Scopus database
2-s2.0-85074044772