Asymptotic behavior of solutions to the semidiscrete diffusion equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423397" target="_blank" >RIV/00216208:11320/20:10423397 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SGyZy1qyJy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SGyZy1qyJy</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2020.106392" target="_blank" >10.1016/j.aml.2020.106392</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic behavior of solutions to the semidiscrete diffusion equation
Original language description
We study the asymptotic behavior of bounded solutions to the one-dimensional diffusion (heat) equation with discrete space and continuous time. We show that a bounded solution approaches the average of the initial values if the average exists, and provide estimates in the situation when it does not exist.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics Letters
ISSN
0893-9659
e-ISSN
—
Volume of the periodical
106
Issue of the periodical within the volume
August 2020
Country of publishing house
GB - UNITED KINGDOM
Number of pages
7
Pages from-to
106392
UT code for WoS article
000531079200007
EID of the result in the Scopus database
2-s2.0-85083383528