Transforming machine translation: a deep learning system reaches news translation quality comparable to human professionals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424334" target="_blank" >RIV/00216208:11320/20:10424334 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0k1mY-gfTl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0k1mY-gfTl</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41467-020-18073-9" target="_blank" >10.1038/s41467-020-18073-9</a>
Alternative languages
Result language
angličtina
Original language name
Transforming machine translation: a deep learning system reaches news translation quality comparable to human professionals
Original language description
The quality of human translation was long thought to be unattainable for computer translation systems. In this study, we present a deep-learning system, CUBBITT, which challenges this view. In a context-aware blind evaluation by human judges, CUBBITT significantly outperformed professional-agency English-to-Czech news translation in preserving text meaning (translation adequacy). While human translation is still rated as more fluent, CUBBITT is shown to be substantially more fluent than previous state-of-the-art systems. Moreover, most participants of a Translation Turing test struggle to distinguish CUBBITT translations from human translations. This work approaches the quality of human translation and even surpasses it in adequacy in certain circumstances. This suggests that deep learning may have the potential to replace humans in applications where conservation of meaning is the primary aim.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature Communications
ISSN
2041-1723
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
4381
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
1-15
UT code for WoS article
000569891500008
EID of the result in the Scopus database
2-s2.0-85090052524