Learning Dynamic Belief Graphs to Generalize on Text-Based Games
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10432150" target="_blank" >RIV/00216208:11320/20:10432150 - isvavai.cz</a>
Result on the web
<a href="https://proceedings.neurips.cc/paper/2020/hash/1fc30b9d4319760b04fab735fbfed9a9-Abstract.html" target="_blank" >https://proceedings.neurips.cc/paper/2020/hash/1fc30b9d4319760b04fab735fbfed9a9-Abstract.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Learning Dynamic Belief Graphs to Generalize on Text-Based Games
Original language description
Playing text-based games requires skills in processing natural language and sequential decision making. Achieving human-level performance on text-based games remains an open challenge, and prior research has largely relied on hand-crafted structured representations and heuristics. In this work, we investigate how an agent can plan and generalize in text-based games using graph-structured representations learned end-to-end from raw text. We propose a novel graph-aided transformer agent (GATA) that infers and updates latent belief graphs during planning to enable effective action selection by capturing the underlying game dynamics. GATA is trained using a combination of reinforcement and self-supervised learning. Our work demonstrates that the learned graph-based representations help agents converge to better policies than their text-only counterparts and facilitate effective generalization across game configurations. Experiments on 500+ unique games from the TextWorld suite show that our best agent outperforms text-based baselines by an average of 24.2%.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Neural Information Processing Systems 33
ISBN
978-1-71382-954-6
ISSN
1049-5258
e-ISSN
—
Number of pages
13
Pages from-to
3045-3057
Publisher name
Curran Associates, Inc.
Place of publication
Neuveden
Event location
Virtuální
Event date
Dec 6, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—