On the Edge-Length Ratio of 2-Trees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10436969" target="_blank" >RIV/00216208:11320/20:10436969 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/21:00347403
Result on the web
<a href="https://doi.org/10.1007/978-3-030-68766-3_7" target="_blank" >https://doi.org/10.1007/978-3-030-68766-3_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-68766-3_7" target="_blank" >10.1007/978-3-030-68766-3_7</a>
Alternative languages
Result language
angličtina
Original language name
On the Edge-Length Ratio of 2-Trees
Original language description
We study planar straight-line drawings of graphs that minimize the ratio between the length of the longest and the shortest edge. We answer a question of Lazard et al. [Theor. Comput. Sci. 770 (2019), 88-94] and, for any given constant r, we provide a 2-tree which does not admit a planar straight-line drawing with a ratio bounded by r. When the ratio is restricted to adjacent edges only, we prove that any 2-tree admits a planar straight-line drawing whose edge-length ratio is at most 4 + ε for any arbitrarily small ε> 0, hence the upper bound on the local edge-length ratio of partial 2-trees is 4. (C) 2020, Springer Nature Switzerland AG.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Graph Drawing and Network Visualization
ISBN
978-3-030-68765-6
ISSN
0302-9743
e-ISSN
—
Number of pages
14
Pages from-to
85-98
Publisher name
Springer Science and Business Media Deutschland GmbH
Place of publication
Cham
Event location
Vancouver
Event date
Sep 16, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—