All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Edge-Length Ratios of Partial 2 -Trees

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10455445" target="_blank" >RIV/00216208:11320/21:10455445 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21240/21:00358128

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9nKjNXZNWp" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9nKjNXZNWp</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0218195921500072" target="_blank" >10.1142/S0218195921500072</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Edge-Length Ratios of Partial 2 -Trees

  • Original language description

    The edge-length ratio of a planar straight-line drawing of a graph is the maximum ratio between the lengths of any two of its edges. When the edges to be considered in the ratio are required to be adjacent, the ratio is called local edge-length ratio. The (local) edge-length ratio of a graph G is the infimum over all (local) edge-length ratios in the planar straight-line drawings of G. We prove that the edge-length ratio of the n-vertex 2-trees is ω(log n), which proves a conjecture by Lazard et al. [TCS 770, 2019, pp. 88-94] and complements an upper bound by Borrazzo and Frati [JoCG 11(1), 2020, pp. 137-155]. We also prove that every partial 2-tree admits a planar straight-line drawing whose local edge-length ratio is at most 4 + for any arbitrarily small &gt; 0.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Computational Geometry and Applications

  • ISSN

    0218-1959

  • e-ISSN

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    22

  • Pages from-to

    141-162

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85123985692