On Edge-Length Ratios of Partial 2 -Trees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10455445" target="_blank" >RIV/00216208:11320/21:10455445 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/21:00358128
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9nKjNXZNWp" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9nKjNXZNWp</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218195921500072" target="_blank" >10.1142/S0218195921500072</a>
Alternative languages
Result language
angličtina
Original language name
On Edge-Length Ratios of Partial 2 -Trees
Original language description
The edge-length ratio of a planar straight-line drawing of a graph is the maximum ratio between the lengths of any two of its edges. When the edges to be considered in the ratio are required to be adjacent, the ratio is called local edge-length ratio. The (local) edge-length ratio of a graph G is the infimum over all (local) edge-length ratios in the planar straight-line drawings of G. We prove that the edge-length ratio of the n-vertex 2-trees is ω(log n), which proves a conjecture by Lazard et al. [TCS 770, 2019, pp. 88-94] and complements an upper bound by Borrazzo and Frati [JoCG 11(1), 2020, pp. 137-155]. We also prove that every partial 2-tree admits a planar straight-line drawing whose local edge-length ratio is at most 4 + for any arbitrarily small > 0.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Computational Geometry and Applications
ISSN
0218-1959
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
2
Country of publishing house
SG - SINGAPORE
Number of pages
22
Pages from-to
141-162
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85123985692