All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Combinatorial generation via permutation languages. II. Lattice congruences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435481" target="_blank" >RIV/00216208:11320/21:10435481 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Dc3ilISx04" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Dc3ilISx04</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-021-2186-1" target="_blank" >10.1007/s11856-021-2186-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Combinatorial generation via permutation languages. II. Lattice congruences

  • Original language description

    This paper deals with lattice congruences of the weak order on the symmetric group, and initiates the investigation of the cover graphs of the corresponding lattice quotients. These graphs also arise as the skeleta of the so-called quotientopes, a family of polytopes recently introduced by Pilaud and Santos [Bull. Lond. Math. Soc., 51:406-420, 2019], which generalize permutahedra, associahedra, hypercubes and several other polytopes. We prove that all of these graphs have a Hamilton path, which can be computed by a simple greedy algorithm. This is an application of our framework for exhaustively generating various classes of combinatorial objects by encoding them as permutations. We also characterize which of these graphs are vertex-transitive or regular via their arc diagrams, give corresponding precise and asymptotic counting results, and we determine their minimum and maximum degrees.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-08554S" target="_blank" >GA19-08554S: Structures and algorithms in highly symmetric graphs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

  • Volume of the periodical

    244

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    IL - THE STATE OF ISRAEL

  • Number of pages

    59

  • Pages from-to

    359-417

  • UT code for WoS article

    000687017400008

  • EID of the result in the Scopus database

    2-s2.0-85113188157