Flip Distances Between Graph Orientations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435475" target="_blank" >RIV/00216208:11320/21:10435475 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p4Ljxf5xJ1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p4Ljxf5xJ1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-020-00751-1" target="_blank" >10.1007/s00453-020-00751-1</a>
Alternative languages
Result language
angličtina
Original language name
Flip Distances Between Graph Orientations
Original language description
Flip graphs are a ubiquitous class of graphs, which encode relations on a set of combinatorial objects by elementary, local changes. Skeletons of associahedra, for instance, are the graphs induced by quadrilateral flips in triangulations of a convex polygon. For some definition of a flip graph, a natural computational problem to consider is the flip distance: Given two objects, what is the minimum number of flips needed to transform one into the other? We consider flip graphs on orientations of simple graphs, where flips consist of reversing the direction of some edges. More precisely, we consider so-called α-orientations of a graph G, in which every vertex v has a specified outdegree α(v) , and a flip consists of reversing all edges of a directed cycle. We prove that deciding whether the flip distance between two α-orientations of a planar graph G is at most two is NP-complete. This also holds in the special case of perfect matchings, where flips involve alternating cycles. This problem amounts to finding geodesics on the common base polytope of two partition matroids, or, alternatively, on an alcoved polytope. It therefore provides an interesting example of a flip distance question that is computationally intractable despite having a natural interpretation as a geodesic on a nicely structured combinatorial polytope. We also consider the dual question of the flip distance between graph orientations in which every cycle has a specified number of forward edges, and a flip is the reversal of all edges in a minimal directed cut. In general, the problem remains hard. However, if we restrict to flips that only change sinks into sources, or vice-versa, then the problem can be solved in polynomial time. Here we exploit the fact that the flip graph is the cover graph of a distributive lattice. This generalizes a recent result from Zhang et al. (Acta Math Sin Engl Ser 35(4):569-576, 2019).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-08554S" target="_blank" >GA19-08554S: Structures and algorithms in highly symmetric graphs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algorithmica
ISSN
0178-4617
e-ISSN
—
Volume of the periodical
83
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
116-143
UT code for WoS article
000552959900001
EID of the result in the Scopus database
2-s2.0-85088645770