Pole placement for overdetermined 2D systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436293" target="_blank" >RIV/00216208:11320/21:10436293 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6oLrNKQf5P" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6oLrNKQf5P</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2020.10.008" target="_blank" >10.1016/j.laa.2020.10.008</a>
Alternative languages
Result language
angličtina
Original language name
Pole placement for overdetermined 2D systems
Original language description
We formulate and solve a pole placement problem by state feedback for overdetermined 2D systems modeled by commutative operator vessels. In this setting, the transfer function of the system is given by a meromorphic bundle map between two holomorphic vector bundles of finite rank over the normalization of a projective plane algebraic curve. The obstruction for a solution is given by an existence of a certain meromorphic bundle map on the input bundle. Reducing to the 1D case, this gives a functional obstruction which is equivalent to the classical pole placement theorem. Our result improves on, and gives a new approach to pole placement even in the classical case, and answers a question of Ball and Vinnikov. (C) 2020 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Volume of the periodical
2021
Issue of the periodical within the volume
610
Country of publishing house
US - UNITED STATES
Number of pages
31
Pages from-to
529-559
UT code for WoS article
000596321700024
EID of the result in the Scopus database
2-s2.0-85094619127