Three-coloring triangle-free graphs on surfaces IV. Bounding face sizes of 4-critical graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437049" target="_blank" >RIV/00216208:11320/21:10437049 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14330/21:00124668
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=za2VbwfheP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=za2VbwfheP</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2020.09.001" target="_blank" >10.1016/j.jctb.2020.09.001</a>
Alternative languages
Result language
angličtina
Original language name
Three-coloring triangle-free graphs on surfaces IV. Bounding face sizes of 4-critical graphs
Original language description
Let G be a 4-critical graph with t triangles, embedded in a surface of genus g. Let c be the number of 4-cycles in G that do not bound a 2-cell face. We prove that 1] f face of G (|f| & minus; 4) <= kappa(g +t + c & minus; 1) for a fixed constant kappa, thus generalizing and strengthening several known results. As a corollary, we prove that every triangle-free graph G embedded in a surface of genus g contains a set of O(g) vertices such that G & minus; X is 3-colorable. (c) 2020 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
150
Issue of the periodical within the volume
september 2021
Country of publishing house
US - UNITED STATES
Number of pages
35
Pages from-to
270-304
UT code for WoS article
000670294100009
EID of the result in the Scopus database
2-s2.0-85090866217