A Janovec-Kay-Dunn-Like Behavior at Thickness Scaling in Ultra-Thin Antiferroelectric ZrO2 Films
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439490" target="_blank" >RIV/00216208:11320/21:10439490 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6Sd.Qhuj3s" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6Sd.Qhuj3s</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/aelm.202100485" target="_blank" >10.1002/aelm.202100485</a>
Alternative languages
Result language
angličtina
Original language name
A Janovec-Kay-Dunn-Like Behavior at Thickness Scaling in Ultra-Thin Antiferroelectric ZrO2 Films
Original language description
Originally based on phenomenological observations, the Janovec-Kay-Dunn (JKD) scaling law has been historically used to describe the dependence of the ferroelectric coercive fields (E-c) on a critical length scale of the material, wherein the film thickness (t) is considered the length scale, and E-c proportional to t(-2/3). Here, for the first time, a JKD-type scaling behavior is reported in an antiferroelectric material, using the ultra-thin films of prototypical flourite-structure binary oxide, zirconia. In these films, a decrease in the ZrO2 layer thickness from 20 nm to 5.4 nm leads to an increase in critical fields for both nonpolar-to-polar (E-a), and polar-to-nonpolar (E-f) transitions, accompanied by a decrease in the average crystallite size, and an increase in the tetragonal distortion of the non-polar P4(2)/nmc ground state structure. Notably, the -2/3 power law as in the JKD law holds when average crystallite size (d), measured from glancing-incident X-ray diffraction, is considered as the critical length scale-i.e., E-a, E-f proportional to d(-2/3). First principles calculations suggest that the increase of tetragonality in thinner films contributes to an increase of the energy barrier for the transition from the non-polar tetragonal ground state to the field-induced polar orthorhombic phase, and in turn, an increase in E-a critical fields. These results suggest a de-stabilization of the ferroelectric phase with a decreasing thickness in antiferroelectric ZrO2, which is contrary to the observations in its fluorite-structure ferroelectric counterparts. With the recent interests in utilizing antiferroelectricity for advanced semiconductor applications, our fundamental exposition of the thickness dependence of functional responses therein can accelerate the development of miniaturized, antiferroelectric electronic memory elements for the complementary metal-oxide-semiconductor based high-volume manufacturing platforms.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000485" target="_blank" >EF15_003/0000485: Nanomaterials centre for advanced applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advanced Electronic Materials
ISSN
2199-160X
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
11
Country of publishing house
DE - GERMANY
Number of pages
9
Pages from-to
2100485
UT code for WoS article
000694985800001
EID of the result in the Scopus database
2-s2.0-85114672953