All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An Amir-Cambern theorem for subspaces of Banach lattice-valued continuous functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441179" target="_blank" >RIV/00216208:11320/21:10441179 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ckqHlOFUtm" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ckqHlOFUtm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s43037-020-00112-8" target="_blank" >10.1007/s43037-020-00112-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An Amir-Cambern theorem for subspaces of Banach lattice-valued continuous functions

  • Original language description

    For i=1,2, let Ei be a reflexive Banach lattice over R with a certain parameter lambda+(Ei)&gt;1, let Ki be a locally compact (Hausdorff) topological space and let Hi be a closed subspace of C0(Ki,Ei) such that each point of the Choquet boundary ChHiKi of Hi is a weak peak point. We show that if there exists an isomorphism T:H1 -&gt; H2 with T.T-1 &lt; min{lambda+(E1),lambda+(E2)} such that T and T-1 preserve positivity, then ChH1K1 is homeomorphic to ChH2K2.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Banach Journal of Mathematical Analysis

  • ISSN

    1735-8787

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    IR - IRAN, ISLAMIC REPUBLIC OF

  • Number of pages

    18

  • Pages from-to

    30

  • UT code for WoS article

    000612045500002

  • EID of the result in the Scopus database

    2-s2.0-85100164903