An Amir-Cambern theorem for subspaces of Banach lattice-valued continuous functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441179" target="_blank" >RIV/00216208:11320/21:10441179 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ckqHlOFUtm" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ckqHlOFUtm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s43037-020-00112-8" target="_blank" >10.1007/s43037-020-00112-8</a>
Alternative languages
Result language
angličtina
Original language name
An Amir-Cambern theorem for subspaces of Banach lattice-valued continuous functions
Original language description
For i=1,2, let Ei be a reflexive Banach lattice over R with a certain parameter lambda+(Ei)>1, let Ki be a locally compact (Hausdorff) topological space and let Hi be a closed subspace of C0(Ki,Ei) such that each point of the Choquet boundary ChHiKi of Hi is a weak peak point. We show that if there exists an isomorphism T:H1 -> H2 with T.T-1 < min{lambda+(E1),lambda+(E2)} such that T and T-1 preserve positivity, then ChH1K1 is homeomorphic to ChH2K2.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Banach Journal of Mathematical Analysis
ISSN
1735-8787
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
2
Country of publishing house
IR - IRAN, ISLAMIC REPUBLIC OF
Number of pages
18
Pages from-to
30
UT code for WoS article
000612045500002
EID of the result in the Scopus database
2-s2.0-85100164903