SMALL-BOUND ISOMORPHISMS OF FUNCTION SPACES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441184" target="_blank" >RIV/00216208:11320/21:10441184 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o4x1bI2rMm" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o4x1bI2rMm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1446788720000129" target="_blank" >10.1017/S1446788720000129</a>
Alternative languages
Result language
angličtina
Original language name
SMALL-BOUND ISOMORPHISMS OF FUNCTION SPACES
Original language description
Let F = R or C. For i = 1; 2, let K-i be a locally compact (Hausdorff) topological space and let Hi be a closed subspace of C-0(K-i, F) such that each point of the Choquet boundary Ch(Hi) Ki of Hi is a weak peak point. We show that if there exists an isomorphism T : H-1 -> H-2 with parallel to T parallel to.parallel to T-1 parallel to < 2, then Ch(H1) K-1 is homeomorphic to Ch(H2) K-2. We then provide a one-sided version of this result. Finally we prove that under the assumption on weak peak points the Choquet boundaries have the same cardinality provided H-1 is isomorphic to H-2.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-00941S" target="_blank" >GA17-00941S: Topological and geometrical properties of Banach spaces and operator algebras II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the Australian Mathematical Society
ISSN
1446-7887
e-ISSN
—
Volume of the periodical
111
Issue of the periodical within the volume
3
Country of publishing house
AU - AUSTRALIA
Number of pages
18
Pages from-to
412-429
UT code for WoS article
000721326500009
EID of the result in the Scopus database
2-s2.0-85082045663