All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Isomorphisms of subspaces of vector-valued continuous functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441196" target="_blank" >RIV/00216208:11320/21:10441196 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5l~nbkuREH" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5l~nbkuREH</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10474-020-01107-5" target="_blank" >10.1007/s10474-020-01107-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Isomorphisms of subspaces of vector-valued continuous functions

  • Original language description

    We deal with isomorphic Banach-Stone type theorems for closedsubspaces of vectorvaluedcontinuous functions. Let F= R or C. For i= 1 , 2 ,let Ei be a reflexive Banach space over F with a certain parameter λ(Ei) &gt; 1 ,which in the real case coincides with the Schaffer constant of Ei, let Ki be alocally compact (Hausdorff) topological space and let Hi be a closed subspaceof C(Ki, Ei) such that each point of the Choquet boundary ChHiKi of Hi is aweak peak point. We show that if there exists an isomorphism T: H1RIGHTWARDS ARROW H2 with| | T| | . | | T- 1| | &lt; min { λ(E1) , λ(E2) } , then ChH1K1 is homeomorphic to ChH2K2.Next we provide an analogous version of the weak vectorvaluedBanach-Stonetheorem for subspaces, where the target spaces do not contain an isomorphic copyof c.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Mathematica Hungarica

  • ISSN

    0236-5294

  • e-ISSN

  • Volume of the periodical

    164

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    32

  • Pages from-to

    200-231

  • UT code for WoS article

    000593931900003

  • EID of the result in the Scopus database

    2-s2.0-85096855671