All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

G-Algebroids: A Unified Framework for Exceptional and Generalised Geometry, and Poisson-Lie Duality

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10443969" target="_blank" >RIV/00216208:11320/21:10443969 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bSVA6R4dKQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bSVA6R4dKQ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/prop.202100028" target="_blank" >10.1002/prop.202100028</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    G-Algebroids: A Unified Framework for Exceptional and Generalised Geometry, and Poisson-Lie Duality

  • Original language description

    We introduce the notion of G-algebroid, generalising both Lie and Courant algebroids, as well as the algebroids used in En(n)xR+ exceptional generalised geometry for n is an element of{3,MIDLINE HORIZONTAL ELLIPSIS,6}. Focusing on the exceptional case, we prove a classification of &quot;exact&quot; algebroids and translate the related classification of Leibniz parallelisable spaces into a tractable algebraic problem. After discussing the general notion of Poisson-Lie duality, we show that the Poisson-Lie U-duality is compatible with the equations of motion of supergravity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

    <a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fortschritte der Physik

  • ISSN

    0015-8208

  • e-ISSN

    1521-3978

  • Volume of the periodical

    69

  • Issue of the periodical within the volume

    4-5

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    11

  • Pages from-to

    2100028

  • UT code for WoS article

    000647469100001

  • EID of the result in the Scopus database

    2-s2.0-85105135367