G-Algebroids: A Unified Framework for Exceptional and Generalised Geometry, and Poisson-Lie Duality
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10443969" target="_blank" >RIV/00216208:11320/21:10443969 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bSVA6R4dKQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bSVA6R4dKQ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/prop.202100028" target="_blank" >10.1002/prop.202100028</a>
Alternative languages
Result language
angličtina
Original language name
G-Algebroids: A Unified Framework for Exceptional and Generalised Geometry, and Poisson-Lie Duality
Original language description
We introduce the notion of G-algebroid, generalising both Lie and Courant algebroids, as well as the algebroids used in En(n)xR+ exceptional generalised geometry for n is an element of{3,MIDLINE HORIZONTAL ELLIPSIS,6}. Focusing on the exceptional case, we prove a classification of "exact" algebroids and translate the related classification of Leibniz parallelisable spaces into a tractable algebraic problem. After discussing the general notion of Poisson-Lie duality, we show that the Poisson-Lie U-duality is compatible with the equations of motion of supergravity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fortschritte der Physik
ISSN
0015-8208
e-ISSN
1521-3978
Volume of the periodical
69
Issue of the periodical within the volume
4-5
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
2100028
UT code for WoS article
000647469100001
EID of the result in the Scopus database
2-s2.0-85105135367