Hitchhiker's Guide to Courant Algebroid Relations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00341263" target="_blank" >RIV/68407700:21340/20:00341263 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.geomphys.2020.103635" target="_blank" >https://doi.org/10.1016/j.geomphys.2020.103635</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomphys.2020.103635" target="_blank" >10.1016/j.geomphys.2020.103635</a>
Alternative languages
Result language
angličtina
Original language name
Hitchhiker's Guide to Courant Algebroid Relations
Original language description
Courant algebroids provide a useful mathematical tool (not only) in string theory. It is thus important to define and examine their morphisms. To some extent, this was done before using an analogue of canonical relations known from symplectic geometry. However, it turns out that applications in physics require a more general notion. We aim to provide a self-contained and detailed treatment of Courant algebroid relations and morphisms. A particular emphasis is placed on providing enough motivating examples. In particular, we show how Poisson-Lie T-duality and Kaluza-Klein reduction of supergravity can be interpreted as Courant algebroid relations compatible with generalized metrics (generalized isometries).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
1879-1662
Volume of the periodical
151
Issue of the periodical within the volume
May
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
49
Pages from-to
—
UT code for WoS article
000528195300012
EID of the result in the Scopus database
2-s2.0-85081022387