Ternary quadratic forms representing a given arithmetic progression
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453499" target="_blank" >RIV/00216208:11320/22:10453499 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QdojsuWM7f" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QdojsuWM7f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnt.2021.09.017" target="_blank" >10.1016/j.jnt.2021.09.017</a>
Alternative languages
Result language
angličtina
Original language name
Ternary quadratic forms representing a given arithmetic progression
Original language description
A positive quadratic form is (k, l)-universal if it represents all the numbers kx + l where x is a non-negative integer, and almost (k, l)-universal if it represents all but finitely many of them. We prove that for any k, l & nbsp;such that k { 8 there exists an almost (k, .l)-universal diagonal ternary form. We also conjecture that there are only finitely many primes p for which a (p, l)-universal diagonal ternary form exists (for any l & nbsp;< p) and we show the results of computer experiments that speak in favor of the conjecture.(C) 2021 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Number Theory
ISSN
0022-314X
e-ISSN
1096-1658
Volume of the periodical
2022
Issue of the periodical within the volume
234
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
140-152
UT code for WoS article
000795908300007
EID of the result in the Scopus database
2-s2.0-85118261273