Linear Bounds for Cycle-Free Saturation Games
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455176" target="_blank" >RIV/00216208:11320/22:10455176 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=goUf~N_94m" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=goUf~N_94m</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37236/10808" target="_blank" >10.37236/10808</a>
Alternative languages
Result language
angličtina
Original language name
Linear Bounds for Cycle-Free Saturation Games
Original language description
Given a family of graphs F, we define the F-saturation game as follows. Two players alternate adding edges to an initially empty graph on n vertices, with the only constraint being that neither player can add an edge that creates a subgraph in F. The game ends when no more edges can be added to the graph. One of the players wishes to end the game as quickly as possible, while the other wishes to prolong the game. We let sat(g)(n, F) denote the number of edges that are in the final graph when both players play optimally. In general there are very few non-trivial bounds on the order of magnitude of sat(g)(n, F). In this work, we find collections of infinite families of cycles C such that sat(g)(n, C) has linear growth rate.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
P3.5
UT code for WoS article
000822527000001
EID of the result in the Scopus database
2-s2.0-85133618680