The codegree threshold of K_4-
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00366791" target="_blank" >RIV/68407700:21340/23:00366791 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/10467/110216" target="_blank" >http://hdl.handle.net/10467/110216</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/jlms.12722" target="_blank" >10.1112/jlms.12722</a>
Alternative languages
Result language
angličtina
Original language name
The codegree threshold of K_4-
Original language description
The codegree threshold ex_2(n, F) of a 3-graph F is the minimum d = d(n) such that every 3-graph on n vertices in which every pair of vertices is contained in at least d + 1 edges contains a copy of F as a subgraph. We study ex_2(n, F) when F = K_4- , the 3-graph on 4 vertices with 3 edges. Using flag algebra techniques, we prove that if n is sufficiently large, then ex_2(n, K_4-)<= n + 1/ 4 .This settles in the affirmative a conjecture of Nagle [Congressus Numerantium, 1999, pp. 119-128]. In addition, we obtain a stability result: for every near-extremal configuration G, there is a quasirandom tournament T on the same vertex set such that G is o(n^3)-close in the edit distance to the 3-graph C(T) whose edges are the cyclically oriented triangles from T. For infinitely many values of n, we are further able to determine ex_2(n, K_4-) exactly and to show that tournament-based constructions C(T) are extremal for those values of n.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES
ISSN
0024-6107
e-ISSN
1469-7750
Volume of the periodical
107
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
32
Pages from-to
1660-1691
UT code for WoS article
000935215000001
EID of the result in the Scopus database
2-s2.0-85148342895