All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Do the majority of stars form as gravitationally unbound?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456052" target="_blank" >RIV/00216208:11320/22:10456052 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dtEC8dOUev" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dtEC8dOUev</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202142082" target="_blank" >10.1051/0004-6361/202142082</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Do the majority of stars form as gravitationally unbound?

  • Original language description

    Context. Some of the youngest stars (age less than or similar to 10 Myr) are clustered, while many others are observed scattered throughout star forming regions or in complete isolation. It has been intensively debated whether such scattered or isolated stars originate in star clusters or whether they form in truly isolated conditions. Exploring these scenarios could help set constraints on the conditions in which massive stars are formed. Aims. We adopted the assumption that all stars form in gravitationally bound star clusters embedded in molecular cloud cores (Gamma-1 model), which expel their natal gas early after their formation. Then we compared the proportion (fraction) of stars found in clusters with observational data. Methods. The star clusters are modelled by the code NBODY6, which includes binary stars, stellar and circumbinary evolution, gas expulsion, and the external gravitational field of their host galaxy. Results. We find that small changes in the assumptions in the current theoretical model estimating the fraction, Gamma, of stars forming in embedded clusters have a large influence on the results, and we present a counterexample as an illustration. This calls into question theoretical arguments about Gamma in embedded clusters and it suggests that there is no firm theoretical ground for low Gamma in galaxies with lower star formation rates (SFRs). Instead, the assumption that all stars form in embedded clusters is in agreement with observational data for the youngest stars (age less than or similar to 10 Myr). In the Gamma-1 scenario, the observed fraction of the youngest stars in clusters increases with the SFR only weakly; the increase is caused by the presence of more massive clusters in galaxies with higher SFRs, which release fewer stars to the field in proportion to their mass. The Gamma-1 model yields a higher fraction of stars in clusters for older stars (ages between 10 Myr and 300 Myr) than what is observed. This discrepancy can be caused by initially less compact clusters or a slightly lower star-formation efficiency than originally assumed in the Gamma-1 model, or by interactions of the post-gas-expulsion revirialised open clusters with molecular clouds.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GA20-21855S" target="_blank" >GA20-21855S: The dynamics of dense star clusters with primordial binaries and massive black holes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy &amp; Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

    1432-0746

  • Volume of the periodical

    660

  • Issue of the periodical within the volume

    duben

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    14

  • Pages from-to

    A61

  • UT code for WoS article

    000782291700011

  • EID of the result in the Scopus database

    2-s2.0-85128476786