Global Schauder Estimates for the p -Laplace System
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456801" target="_blank" >RIV/00216208:11320/22:10456801 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tVu5L4rxIF" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tVu5L4rxIF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00205-021-01712-w" target="_blank" >10.1007/s00205-021-01712-w</a>
Alternative languages
Result language
angličtina
Original language name
Global Schauder Estimates for the p -Laplace System
Original language description
An optimal first-order global regularity theory, in spaces of functions defined in terms of oscillations, is established for solutions to Dirichlet problems for the p-Laplace equation and system, with the right-hand side in divergence form. The exact mutual dependence among the regularity of the solution, of the datum on the right-hand side, and of the boundary of the domain in these spaces is exhibited. A comprehensive formulation of our results is given in terms of Campanato seminorms. New regularity results in customary function spaces, such as Hölder, BMO and VMO spaces, follow as a consequence. Importantly, the conclusions are new even in the linear case when p= 2 , and hence the differential operator is the plain Laplacian. Yet in this classical linear setting, our contribution completes and augments the celebrated Schauder theory in Hölder spaces. A distinctive trait of our results is their sharpness, which is demonstrated by a family of apropos examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ19-11707Y" target="_blank" >GJ19-11707Y: Interactions of fluids and solids - On a systematic analysis theory for partial differential equations in the context of fluid-structure interactions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Rational Mechanics and Analysis
ISSN
0003-9527
e-ISSN
1432-0673
Volume of the periodical
243
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
55
Pages from-to
201-255
UT code for WoS article
000722102900001
EID of the result in the Scopus database
2-s2.0-85120644560