Global continuity and BMO estimates for non-Newtonian fluids with perfect slip boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00541502" target="_blank" >RIV/67985840:_____/21:00541502 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/21:10441255
Result on the web
<a href="https://doi.org/10.4171/rmi/1222" target="_blank" >https://doi.org/10.4171/rmi/1222</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/rmi/1222" target="_blank" >10.4171/rmi/1222</a>
Alternative languages
Result language
angličtina
Original language name
Global continuity and BMO estimates for non-Newtonian fluids with perfect slip boundary conditions
Original language description
We study the generalized stationary Stokes system in a bounded domain in the plane equipped with perfect slip boundary conditions. We show natural stability results in oscillatory spaces, i.e., Hölder spaces and Campanato spaces, including the border-line spaces of bounded mean oscillations (BMO) and vanishing mean oscillations (VMO). In particular, we show that, under appropriate assumptions, gradients of solutions are globally continuous. Since the stress tensor is assumed to be governed by a general Orlicz function, our theory includes various cases of (possibly degenerate) shear thickening and shear thinning fluids, including the model case of power law fluids. The global estimates seem to be new even in the case of the linear Stokes system. We include counterexamples that demonstrate that our assumptions on the right-hand side and on the boundary regularity are optimal.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Revista Matematica Iberoamericana
ISSN
0213-2230
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
59
Pages from-to
1115-1173
UT code for WoS article
000635197100007
EID of the result in the Scopus database
2-s2.0-85103757106