L-p-strong solution to fluid-rigid body interaction system with Navier slip boundary condition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00548750" target="_blank" >RIV/67985840:_____/21:00548750 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s41808-021-00134-9" target="_blank" >https://doi.org/10.1007/s41808-021-00134-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s41808-021-00134-9" target="_blank" >10.1007/s41808-021-00134-9</a>
Alternative languages
Result language
angličtina
Original language name
L-p-strong solution to fluid-rigid body interaction system with Navier slip boundary condition
Original language description
We study a fluid-structure interaction problem describing movement of a rigid body inside a bounded domain filled by a viscous fluid. The fluid is modelled by the generalized incompressible Naiver–Stokes equations which include cases of Newtonian and non-Newtonian fluids. The fluid and the rigid body are coupled via the Navier slip boundary conditions and balance of forces at the fluid-rigid body interface. Our analysis also includes the case of the nonlinear slip condition. The main results assert the existence of strong solutions, in an Lp- Lq setting, globally in time, for small data in the Newtonian case, while existence of strong solutions in Lp-spaces, locally in time, is obtained for non-Newtonian case. The proof for the Newtonian fluid essentially uses the maximal regularity property of the associated linear system which is obtained by proving the R-sectoriality of the corresponding operator. The existence and regularity result for the general non-Newtonian fluid-solid system then relies upon the previous case. Moreover, we also prove the exponential stability of the system in the Newtonian case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Elliptic and Parabolic Equations
ISSN
2296-9020
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
51
Pages from-to
439-489
UT code for WoS article
000712496000001
EID of the result in the Scopus database
2-s2.0-85117889785