ON THE SET OF POINTS AT WHICH AN INCREASING CONTINUOUS SINGULAR FUNCTION HAS A NONZERO FINITE DERIVATIVE
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10475584" target="_blank" >RIV/00216208:11320/22:10475584 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3vvCEve2K0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3vvCEve2K0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14321/realanalexch.47.2.1638769133" target="_blank" >10.14321/realanalexch.47.2.1638769133</a>
Alternative languages
Result language
angličtina
Original language name
ON THE SET OF POINTS AT WHICH AN INCREASING CONTINUOUS SINGULAR FUNCTION HAS A NONZERO FINITE DERIVATIVE
Original language description
Sanchez, Viader, Paradis and Carrillo (2016) proved that there exists an increasing continuous singular function f on [0, 1] such that the set A(f) of points where f has a nonzero finite derivative has Hausdorff dimension 1 in each subinterval of [0, 1]. We prove a stronger (and optimal) result showing that a set A(f) as above can contain any prescribed F-sigma null subset of [0, 1].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Real Analysis Exchange
ISSN
0147-1937
e-ISSN
1930-1219
Volume of the periodical
47
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
461-466
UT code for WoS article
000927659400013
EID of the result in the Scopus database
2-s2.0-85170263411