All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ON THE SET OF POINTS AT WHICH AN INCREASING CONTINUOUS SINGULAR FUNCTION HAS A NONZERO FINITE DERIVATIVE

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10475584" target="_blank" >RIV/00216208:11320/22:10475584 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3vvCEve2K0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3vvCEve2K0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14321/realanalexch.47.2.1638769133" target="_blank" >10.14321/realanalexch.47.2.1638769133</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ON THE SET OF POINTS AT WHICH AN INCREASING CONTINUOUS SINGULAR FUNCTION HAS A NONZERO FINITE DERIVATIVE

  • Original language description

    Sanchez, Viader, Paradis and Carrillo (2016) proved that there exists an increasing continuous singular function f on [0, 1] such that the set A(f) of points where f has a nonzero finite derivative has Hausdorff dimension 1 in each subinterval of [0, 1]. We prove a stronger (and optimal) result showing that a set A(f) as above can contain any prescribed F-sigma null subset of [0, 1].

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Real Analysis Exchange

  • ISSN

    0147-1937

  • e-ISSN

    1930-1219

  • Volume of the periodical

    47

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

    461-466

  • UT code for WoS article

    000927659400013

  • EID of the result in the Scopus database

    2-s2.0-85170263411