All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Simple, deterministic, fast (but weak) approximations to edit distance and Dyck edit distance

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10465182" target="_blank" >RIV/00216208:11320/23:10465182 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1137/1.9781611977554.ch188" target="_blank" >https://doi.org/10.1137/1.9781611977554.ch188</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/1.9781611977554.ch188" target="_blank" >10.1137/1.9781611977554.ch188</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Simple, deterministic, fast (but weak) approximations to edit distance and Dyck edit distance

  • Original language description

    We consider the problem of obtaining approximation algorithms for standard edit distance and Dyck edit distance that are simple, deterministic and fast, but whose approximation factor may be high. For the standard edit distance of two strings, we introduce a class of simple and fast algorithms called emph{basic single pass algorithms}. Saha (2014) gave a randomized algorithm in this class that achieves an $O(d)$ approximation on inputs $x,y$ whose edit distance is $O(d)$. In this paper, we (1) present a deterministic algorithm in this class that achieves similar performance and (2) prove that no algorithm (even randomized) in this class can give a better approximation factor. For the Dyck edit distance problem, Saha gave a randomized reduction from Dyck edit distance to standard two string edit distance at a cost of a $O(log d)$ factor where $d$ is the Dyck edit distance. We give a deterministic reduction whose description and proof are very simple.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023

  • ISBN

    978-1-61197-755-4

  • ISSN

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    5203-5219

  • Publisher name

    Association for Computing Machinery - Society for Industrial and Applied Mathematics

  • Place of publication

    USA

  • Event location

    Florence, Italy

  • Event date

    Jan 22, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article