All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Enochs' conjecture for small precovering classes of modules

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471316" target="_blank" >RIV/00216208:11320/23:10471316 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=n~UmPujewz" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=n~UmPujewz</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-022-2421-4" target="_blank" >10.1007/s11856-022-2421-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Enochs' conjecture for small precovering classes of modules

  • Original language description

    Enochs&apos; conjecture asserts that each covering class of modules (over any fixed ring) has to be closed under direct limits. Although various special cases of the conjecture have been verified, the conjecture remains open in its full generality. In this short paper, we prove the validity of the conjecture for small precovering classes, i.e., the classes of the form Add(M) where M is any module, under a mild additional set-theoretic assumption which ensures that there are enough non-reflecting stationary sets. We even show that M has a perfect decomposition if Add(M) is a covering class. Finally, the additional set-theoretic assumption is shown to be redundant if there exists an n &lt; &lt;omega&gt; such that M decomposes into a direct sum of ?(n)-generated mo dules.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

    1565-8511

  • Volume of the periodical

    255

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    IL - THE STATE OF ISRAEL

  • Number of pages

    15

  • Pages from-to

    401-415

  • UT code for WoS article

    001034664500017

  • EID of the result in the Scopus database