All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Enochs' conjecture for cotorsion pairs and more

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488418" target="_blank" >RIV/00216208:11320/24:10488418 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3Qd8ox_-R-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3Qd8ox_-R-</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/forum-2023-0220" target="_blank" >10.1515/forum-2023-0220</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Enochs' conjecture for cotorsion pairs and more

  • Original language description

    Enochs&apos; conjecture asserts that each covering class of modules (over any ring) has to be closed under direct limits. Although various special cases of the conjecture have been verified, the conjecture remains open in its full generality. In this paper, we prove the conjecture for the classes Filt (delta) , where delta consists of N-n-presented modules for some fixed n &lt; omega. In particular, this applies to the left-hand class of any cotorsion pair generated by a class of N-n-presented modules. Moreover, we also show that it is consistent with ZFC that Enochs&apos; conjecture holds for all classes of the form Filt (delta) , where delta is a set of modules. This leaves us with no explicit example of a covering class where we cannot prove that Enochs&apos; conjecture holds (possibly under some additional set-theoretic assumption).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA23-05148S" target="_blank" >GA23-05148S: Homological and structural theory in geometric contexts</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Forum Mathematicum

  • ISSN

    0933-7741

  • e-ISSN

    1435-5337

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    12

  • Pages from-to

    1517-1528

  • UT code for WoS article

    001134560600001

  • EID of the result in the Scopus database

    2-s2.0-85181494556