Deconstructible abstract elementary classes of modules and categoricity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488097" target="_blank" >RIV/00216208:11320/24:10488097 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KBbPCdK8zD" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KBbPCdK8zD</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/blms.13172" target="_blank" >10.1112/blms.13172</a>
Alternative languages
Result language
angličtina
Original language name
Deconstructible abstract elementary classes of modules and categoricity
Original language description
We prove a version of Shelah's categoricity conjecture for arbitrary deconstructible classes of modules. Moreover, we show that if A is a deconstructible class of modules that fits in an abstract elementary class (A, <= such that (1) A is closed under direct summands and (2) <= refines direct summands, then A is closed under arbitrary direct limits. In the Appendix, we prove that the assumption (2) is not needed in some models of ZFC.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA23-05148S" target="_blank" >GA23-05148S: Homological and structural theory in geometric contexts</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the London Mathematical Society
ISSN
0024-6093
e-ISSN
1469-2120
Volume of the periodical
56
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
3854-3866
UT code for WoS article
001332693600001
EID of the result in the Scopus database
2-s2.0-85206686112