On the reducing projective dimension over local rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471928" target="_blank" >RIV/00216208:11320/23:10471928 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/24:10490627
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bq4LfvWRNc" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bq4LfvWRNc</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0017089523000368" target="_blank" >10.1017/S0017089523000368</a>
Alternative languages
Result language
angličtina
Original language name
On the reducing projective dimension over local rings
Original language description
In this paper, we are concerned with certain invariants of modules, called reducing invariants, which have been recently introduced and studied by Araya-Celikbas and Araya-Takahashi. We raise the question whether the residue field of each commutative Noetherian local ring has finite reducing projective dimension and obtain an affirmative answer for the question for a large class of local rings. Furthermore, we construct new examples of modules of infinite projective dimension that have finite reducing projective dimension and study several fundamental properties of reducing dimensions, especially properties under local homomorphisms of local rings.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA23-05148S" target="_blank" >GA23-05148S: Homological and structural theory in geometric contexts</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Glasgow Mathematical Journal
ISSN
0017-0895
e-ISSN
1469-509X
Volume of the periodical
2023
Issue of the periodical within the volume
October
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
1-15
UT code for WoS article
001090452200001
EID of the result in the Scopus database
2-s2.0-85176009471