All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the reducing projective dimension over local rings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471928" target="_blank" >RIV/00216208:11320/23:10471928 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/24:10490627

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bq4LfvWRNc" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bq4LfvWRNc</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0017089523000368" target="_blank" >10.1017/S0017089523000368</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the reducing projective dimension over local rings

  • Original language description

    In this paper, we are concerned with certain invariants of modules, called reducing invariants, which have been recently introduced and studied by Araya-Celikbas and Araya-Takahashi. We raise the question whether the residue field of each commutative Noetherian local ring has finite reducing projective dimension and obtain an affirmative answer for the question for a large class of local rings. Furthermore, we construct new examples of modules of infinite projective dimension that have finite reducing projective dimension and study several fundamental properties of reducing dimensions, especially properties under local homomorphisms of local rings.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA23-05148S" target="_blank" >GA23-05148S: Homological and structural theory in geometric contexts</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Glasgow Mathematical Journal

  • ISSN

    0017-0895

  • e-ISSN

    1469-509X

  • Volume of the periodical

    2023

  • Issue of the periodical within the volume

    October

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    1-15

  • UT code for WoS article

    001090452200001

  • EID of the result in the Scopus database

    2-s2.0-85176009471