Consecutive Real Quadratic Fields with Large Class Numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10472025" target="_blank" >RIV/00216208:11320/23:10472025 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=n-r2x2Hlmj" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=n-r2x2Hlmj</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imrn/rnac176" target="_blank" >10.1093/imrn/rnac176</a>
Alternative languages
Result language
angličtina
Original language name
Consecutive Real Quadratic Fields with Large Class Numbers
Original language description
For a given positive integer k, we prove that there are at least x(1/2-o(1)) integers d <= x such that the real quadratic fields Q(root d + 1), ..., Q(root d + k) have class numbers essentially as large as possible.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GM21-00420M" target="_blank" >GM21-00420M: Universal Quadratic Forms and Class Numbers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Mathematics Research Notices
ISSN
1073-7928
e-ISSN
1687-0247
Volume of the periodical
2023
Issue of the periodical within the volume
14
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
12052-12063
UT code for WoS article
000826598300001
EID of the result in the Scopus database
—