On the size of roots of a family of polynomials related to linear recurrence sequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021122" target="_blank" >RIV/62690094:18470/23:50021122 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s11139-022-00691-0" target="_blank" >https://link.springer.com/article/10.1007/s11139-022-00691-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11139-022-00691-0" target="_blank" >10.1007/s11139-022-00691-0</a>
Alternative languages
Result language
angličtina
Original language name
On the size of roots of a family of polynomials related to linear recurrence sequences
Original language description
In recent years, many authors studied the arithmetic, analytic and geometric aspects of roots of characteristic polynomials of some linear recurrence sequences. Many of these polynomials are particular cases of the three-parameter family fk,p,q(x) = xk- pxk-1- qx- 1 , for non-negative integers k, p and q, with k≥ 3 and p≥ 1. In this work, we prove some properties related to the roots of the polynomial fk,p,q(x) which, for instance, make their applications possible in a large class of Diophantine problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Ramanujan Journal
ISSN
1382-4090
e-ISSN
1572-9303
Volume of the periodical
61
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
851-871
UT code for WoS article
000921725400001
EID of the result in the Scopus database
2-s2.0-85146720128