INITIAL L2 x middot middot middot x L2 BOUNDS FOR MULTILINEAR OPERATORS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475588" target="_blank" >RIV/00216208:11320/23:10475588 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=h5Dqaw9OsY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=h5Dqaw9OsY</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/tran/8877" target="_blank" >10.1090/tran/8877</a>
Alternative languages
Result language
angličtina
Original language name
INITIAL L2 x middot middot middot x L2 BOUNDS FOR MULTILINEAR OPERATORS
Original language description
The Lp boundedness theory of convolution operators is based on an initial L2-+ L2 estimate derived from the Fourier transform. The corresponding theory of multilinear operators lacks such a simple initial estimate in view of the unavailability of Plancherel's identity in this setting, and up to now it has not been clear what a natural initial estimate might be. In this work we obtain initial L2 x center dot center dot center dot x L2-+ L2/m estimates for three types of important multilinear operators: rough singular integrals, multipliers of Ho center dot rmander type, and multipliers whose derivatives satisfy qualitative estimates. These estimates lay the foundation for the derivation of other Lp estimates for such operators.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-07996S" target="_blank" >GA18-07996S: Geometric and Harmonic Analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Transactions of the American Mathematical Society
ISSN
0002-9947
e-ISSN
1088-6850
Volume of the periodical
376
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
3445-3472
UT code for WoS article
000937446300001
EID of the result in the Scopus database
2-s2.0-85159012115