All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On pointwise a.e. convergence of multilinear operators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475603" target="_blank" >RIV/00216208:11320/23:10475603 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=HCIFIAuzg6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=HCIFIAuzg6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4153/S0008414X23000305" target="_blank" >10.4153/S0008414X23000305</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On pointwise a.e. convergence of multilinear operators

  • Original language description

    In this work, we obtain the pointwise almost everywhere convergence for two families of multilinear operators: (a) the doubly truncated homogeneous singular integral operators associated with L-q functions on the sphere and (b) lacunary multiplier operators of limited smoothness. The a.e. convergence is deduced from the L-2 x. x L-2 -&gt; L-2/m boundedness of the associated maximal multilinear operators.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA21-01976S" target="_blank" >GA21-01976S: Geometric and Harmonic Analysis 2</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Canadian Journal of Mathematics

  • ISSN

    0008-414X

  • e-ISSN

    1496-4279

  • Volume of the periodical

    2023

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CA - CANADA

  • Number of pages

    28

  • Pages from-to

    1-28

  • UT code for WoS article

    001010576200001

  • EID of the result in the Scopus database

    2-s2.0-85162128699