All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Embeddings between Lorentz sequence spaces are strictly but not finitely strictly singular

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475594" target="_blank" >RIV/00216208:11320/23:10475594 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21110/23:00372601

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=lismg2v3h7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=lismg2v3h7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/sm220822-10-1" target="_blank" >10.4064/sm220822-10-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Embeddings between Lorentz sequence spaces are strictly but not finitely strictly singular

  • Original language description

    Given 0 &lt; p, q, r &lt; infinity and q &lt; r &lt;= infinity we consider the natural embedding p pound,q ,-&gt; p pound,r between Lorentz sequence spaces. We introduce a new method of proving that this non-compact embedding is always strictly singular but not finitely strictly singular.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia Mathematica

  • ISSN

    0039-3223

  • e-ISSN

    1730-6337

  • Volume of the periodical

    272

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    24

  • Pages from-to

    35-58

  • UT code for WoS article

    000942501100001

  • EID of the result in the Scopus database

    2-s2.0-85175075720