Legendrian submanifolds from Bohr-Sommerfeld covers of monotone Lagrangian tori
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10494271" target="_blank" >RIV/00216208:11320/23:10494271 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=iNiVPSFmjZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=iNiVPSFmjZ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/CAG.2023.v31.n4.a6" target="_blank" >10.4310/CAG.2023.v31.n4.a6</a>
Alternative languages
Result language
angličtina
Original language name
Legendrian submanifolds from Bohr-Sommerfeld covers of monotone Lagrangian tori
Original language description
By a result due to Ziltener, there exist no closed embedded Bohr-Sommerfeld Lagrangians inside CP n for the prequantisation bun-dle whose total space is the standard contact sphere. On the otherhand, any embedded monotone Lagrangian torus has a canoni-cal nontrivial cover which is a Bohr-Sommerfeld immersion. Wedraw the front projections for the corresponding Legendrian liftsinside a contact Darboux ball of the threefold covers of both thetwo-dimensional Clifford and Chekanov tori (the former is the Leg-endrian link of the Harvey-Lawson special Lagrangian cone), andcompute the associated Chekanov-Eliashberg algebras. Althoughthese Legendrians are not loose, we show that they both admitexact Lagrangian cobordisms to the loose Legendrian sphere; theyhence admit exact Lagrangian caps in the symplectisation, whichare non-regular Lagrangian cobordisms. Along the way, we alsocompute bilinearised Legendrian contact homology of a generalLegendrian surface in the standard contact vector space when allReeb chords are of positive degree, as well as the augmentationvariety in the case of tori
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Analysis and Geometry
ISSN
1019-8385
e-ISSN
1944-9992
Volume of the periodical
31
Issue of the periodical within the volume
4
Country of publishing house
HK - HONG KONG
Number of pages
73
Pages from-to
905-977
UT code for WoS article
001434393600006
EID of the result in the Scopus database
2-s2.0-85199896478