All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Helly numbers of exponential lattices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10473475" target="_blank" >RIV/00216208:11320/24:10473475 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Fv-TRXpkE_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Fv-TRXpkE_</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2023.103884" target="_blank" >10.1016/j.ejc.2023.103884</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Helly numbers of exponential lattices

  • Original language description

    Given a set S subset of R-2, define the Helly number of S, denoted by H(S), as the smallest positive integer N, if it exists, for which the following statement is true: for any finite family F of convex sets in R(2 )such that the intersection of any N or fewer members of F contains at least one point of S, there is a point of S common to all members of F.We prove that the Helly numbers of exponential lattices {alpha(n): n is an element of N-0}(2) are finite for every alpha &gt; 1 and we deter-mine their exact values in some instances. In particular, we obtain H({2(n): n is an element of N-0}(2)) = 5, solving a problem posed by Dillon (2021).For real numbers alpha, beta &gt; 1, we also fully characterize exponential lattices L(alpha, beta) = {alpha(n) : n is an element of N-0} x {beta(n) : n is an element of N-0} with finite Helly numbers by showing that H(L(alpha, beta)) is finite if and only if log(alpha)(beta) is rational.(c) 2023 Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA21-32817S" target="_blank" >GA21-32817S: Algorithmic, structural and complexity aspects of geometric configurations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

    1095-9971

  • Volume of the periodical

    116

  • Issue of the periodical within the volume

    February 2024

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    103884

  • UT code for WoS article

    001112988600001

  • EID of the result in the Scopus database

    2-s2.0-85176443575