Minimal asymmetric hypergraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10476570" target="_blank" >RIV/00216208:11320/24:10476570 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=F863YMfrNT" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=F863YMfrNT</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2023.08.006" target="_blank" >10.1016/j.jctb.2023.08.006</a>
Alternative languages
Result language
angličtina
Original language name
Minimal asymmetric hypergraphs
Original language description
In this paper, we prove that for any k >= 3, there exist infinitely many minimal asymmetric k-uniform hypergraphs. This is in a striking contrast to k = 2, where it has been proved recently that there are exactly 18 minimal asymmetric graphs. We also determine, for every k >= 1, the minimum size of an asymmetric k-uniform hypergraph. (c) 2023 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA21-10775S" target="_blank" >GA21-10775S: Ramsey theory in the context of group theory, model theory and topological dynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
1096-0902
Volume of the periodical
164
Issue of the periodical within the volume
January 2024
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
105-118
UT code for WoS article
001084493800001
EID of the result in the Scopus database
2-s2.0-85171530862