Algebraic classification of 2+1 geometries: a new approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484671" target="_blank" >RIV/00216208:11320/24:10484671 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o9ITXZDtm4" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o9ITXZDtm4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6382/ad3ffd" target="_blank" >10.1088/1361-6382/ad3ffd</a>
Alternative languages
Result language
angličtina
Original language name
Algebraic classification of 2+1 geometries: a new approach
Original language description
We present a convenient method of algebraic classification of 2+1 spacetimes into the types I, II, D, III, N and O, without using any field equations. It is based on the 2+1 analogue of the Newman-Penrose curvature scalars Psi A of distinct boost weights, which are specific projections of the Cotton tensor onto a suitable null triad. The algebraic types are then simply determined by the gradual vanishing of such Cotton scalars, starting with those of the highest boost weight. This classification is directly related to the specific multiplicity of the Cotton-aligned null directions and to the corresponding Bel-Debever criteria. Using a bivector (that is 2-form) decomposition, we demonstrate that our method is fully equivalent to the usual Petrov-type classification of 2+1 spacetimes based on the eigenvalue problem and determining the respective canonical Jordan form of the Cotton-York tensor. We also derive a simple synoptic algorithm of algebraic classification based on the key polynomial curvature invariants. To show the practical usefulness of our approach, we perform the classification of several explicit examples, namely the general class of Robinson-Trautman spacetimes with an aligned electromagnetic field and a cosmological constant, and other metrics of various algebraic types.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GA23-05914S" target="_blank" >GA23-05914S: Advanced Techniques Applied to Black-Hole and Gravitational-Wave Exact Spacetimes</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Classical and Quantum Gravity
ISSN
0264-9381
e-ISSN
1361-6382
Volume of the periodical
41
Issue of the periodical within the volume
11
Country of publishing house
GB - UNITED KINGDOM
Number of pages
39
Pages from-to
115008
UT code for WoS article
001217293000001
EID of the result in the Scopus database
2-s2.0-85192743588