All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unit and idempotent additive maps over countable linear transformations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488396" target="_blank" >RIV/00216208:11320/24:10488396 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=r~UJnG9zQd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=r~UJnG9zQd</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15672/hujms.1187608" target="_blank" >10.15672/hujms.1187608</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unit and idempotent additive maps over countable linear transformations

  • Original language description

    Let V be a countably generated right vector space over a field F and a E End(V F ) be a shift operator. We show that there exist a unit u and an idempotent e in End(V F ) such that 1 - u, a - u are units in End(V F ) and 1 - e, a - e are idempotents in End(V F ) . We also obtain that if D is a division ring D % Z 2 , Z 3 and V D is a D -module, then for every alpha E End(V D ) there exists a unit u E End(V D ) such that 1 - u, alpha - u are units in End(V D ) .

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Hacettepe journal of mathematics and statistics

  • ISSN

  • e-ISSN

    2651-477X

  • Volume of the periodical

    53

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    TR - TURKEY

  • Number of pages

    9

  • Pages from-to

    305-313

  • UT code for WoS article

    001225022700001

  • EID of the result in the Scopus database

    2-s2.0-85193010888