Patterns of non-radial solutions to coupled semilinear elliptic systems on a disc
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00531890" target="_blank" >RIV/67985840:_____/21:00531890 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.na.2020.112094" target="_blank" >https://doi.org/10.1016/j.na.2020.112094</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2020.112094" target="_blank" >10.1016/j.na.2020.112094</a>
Alternative languages
Result language
angličtina
Original language name
Patterns of non-radial solutions to coupled semilinear elliptic systems on a disc
Original language description
In this paper, we prove the existence of non-radial solutions to the problem −△u=f(z,u), u|∂D=0 on the unit disc D≔{z∈ℂ:|z|<1} with u(z)∈Rk, where f is a sub-linear continuous function, differentiable with respect to u at zero and satisfying f(eiθz,u)=f(z,u) for all θ∈R, f(z,−u)=−f(z,u). Under the assumption that f respects additional (spacial) symmetries on Rk, we investigate symmetric properties of the corresponding non-radial solutions. The abstract result is supported by a numerical example with S4-symmetry.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
1873-5215
Volume of the periodical
202
Issue of the periodical within the volume
January
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
112094
UT code for WoS article
000581179100002
EID of the result in the Scopus database
2-s2.0-85089834760