Unit and idempotent additive maps over countable linear transformations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488396" target="_blank" >RIV/00216208:11320/24:10488396 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=r~UJnG9zQd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=r~UJnG9zQd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15672/hujms.1187608" target="_blank" >10.15672/hujms.1187608</a>
Alternative languages
Result language
angličtina
Original language name
Unit and idempotent additive maps over countable linear transformations
Original language description
Let V be a countably generated right vector space over a field F and a E End(V F ) be a shift operator. We show that there exist a unit u and an idempotent e in End(V F ) such that 1 - u, a - u are units in End(V F ) and 1 - e, a - e are idempotents in End(V F ) . We also obtain that if D is a division ring D % Z 2 , Z 3 and V D is a D -module, then for every alpha E End(V D ) there exists a unit u E End(V D ) such that 1 - u, alpha - u are units in End(V D ) .
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Hacettepe journal of mathematics and statistics
ISSN
—
e-ISSN
2651-477X
Volume of the periodical
53
Issue of the periodical within the volume
2
Country of publishing house
TR - TURKEY
Number of pages
9
Pages from-to
305-313
UT code for WoS article
001225022700001
EID of the result in the Scopus database
2-s2.0-85193010888