All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bounding Radon Numbers via Betti Numbers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488672" target="_blank" >RIV/00216208:11320/24:10488672 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=u2vtUItR3p" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=u2vtUItR3p</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imrn/rnae056" target="_blank" >10.1093/imrn/rnae056</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bounding Radon Numbers via Betti Numbers

  • Original language description

    We prove general topological Radon-type theorems for sets in $mathbb R&lt;^&gt;{d}$ or on a surface. Combined with a recent result of Holmsen and Lee, we also obtain fractional Helly theorem, and consequently the existence of weak $varepsilon $-nets as well as a $(p,q)$-theorem for those sets. More precisely, given a family ${mathcal{F}}$ of subsets of ${mathbb{R}}&lt;^&gt;{d}$, we will measure the homological complexity of ${mathcal{F}}$ by the supremum of the first $lceil d/2rceil $ reduced Betti numbers of $bigcap{mathcal{G}}$ over all nonempty ${mathcal{G}} subseteq{mathcal{F}}$. We show that if ${mathcal{F}}$ has homological complexity at most $b$, the Radon number of ${mathcal{F}}$ is bounded in terms of $b$ and $d$. In case that ${mathcal{F}}$ lives on a surface and the number of connected components of $bigcap mathcal G$ is at most $b$ for any $mathcal Gsubseteq mathcal F$, then the Radon number of ${mathcal{F}}$ is bounded by a function depending only on $b$ and the surface itself. For surfaces, if we moreover assume the sets in ${mathcal{F}}$ are open, we show that the fractional Helly number of $mathcal F$ is linear in $b$. The improvement is based on a recent result of the author and Kalai. Specifically, for $b=1$ we get that the fractional Helly number is at most three, which is optimal. This case further leads to solving a conjecture of Holmsen, Kim, and Lee about an existence of a $(p,q)$-theorem for open subsets of a surface.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-19073S" target="_blank" >GA22-19073S: Combinatorial and computational complexity in topology and geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Mathematics Research Notices

  • ISSN

    1073-7928

  • e-ISSN

    1687-0247

  • Volume of the periodical

    2024

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    19

  • Pages from-to

    9482-9500

  • UT code for WoS article

    001195357400001

  • EID of the result in the Scopus database