A cross-diffusion system modeling rivaling gangs: Global existence of bounded solutions and FCT stabilization for numerical simulation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489223" target="_blank" >RIV/00216208:11320/24:10489223 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CpZ93RwjNh" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CpZ93RwjNh</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202524500349" target="_blank" >10.1142/S0218202524500349</a>
Alternative languages
Result language
angličtina
Original language name
A cross-diffusion system modeling rivaling gangs: Global existence of bounded solutions and FCT stabilization for numerical simulation
Original language description
In this paper, we study a gang territorial model consisting of two parabolic and two ordinary differential equations, where a taxis-type mechanism models that the two rivaling gangs are repelled by each other's graffiti. Our main analytical finding shows the existence of global, bounded classical solutions. By making use of quantitative global estimates, we prove that these solutions converge to homogeneous steady states if the initial data are sufficiently small. Moreover, we perform numerical experiments which show that for different choices of parameters, the system may become diffusion- or convection-dominated, where in the former case the solutions converge toward constant steady states while in the latter case nontrivial asymptotic behavior such as segregation is observed. In order to perform these experiments, we apply a nonlinear finite element flux-corrected transport method (FEM-FCT) which is positivity-preserving. Then we treat the nonlinearities in both the system and the proposed nonlinear scheme simultaneously using fixed-point iteration.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
1793-6314
Volume of the periodical
34
Issue of the periodical within the volume
09
Country of publishing house
SG - SINGAPORE
Number of pages
41
Pages from-to
1739-1779
UT code for WoS article
001260458100002
EID of the result in the Scopus database
2-s2.0-85197907690