Universally defining ℤ in ℚ with 10 quantifiers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489720" target="_blank" >RIV/00216208:11320/24:10489720 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=HXr50fYFW9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=HXr50fYFW9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/jlms.12864" target="_blank" >10.1112/jlms.12864</a>
Alternative languages
Result language
angličtina
Original language name
Universally defining ℤ in ℚ with 10 quantifiers
Original language description
We show that for a global field K, every ring of S-integers has a universal first-order definition in K with 10 quantifiers. We also give a proof that every finite intersection of valuation rings K of has an existential first-order definition in K with 3 quantifiers.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the London Mathematical Society
ISSN
0024-6107
e-ISSN
1469-7750
Volume of the periodical
109
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
20
Pages from-to
—
UT code for WoS article
001161640200007
EID of the result in the Scopus database
2-s2.0-85183839778