Not all Kripke models of HA are locally PA
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00553323" target="_blank" >RIV/67985840:_____/22:00553323 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/22:10456572
Result on the web
<a href="https://doi.org/10.1016/j.aim.2021.108126" target="_blank" >https://doi.org/10.1016/j.aim.2021.108126</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2021.108126" target="_blank" >10.1016/j.aim.2021.108126</a>
Alternative languages
Result language
angličtina
Original language name
Not all Kripke models of HA are locally PA
Original language description
Let K be an arbitrary Kripke model of Heyting Arithmetic, HA. For every node k in K, we can view the classical structure of k, Mk as a model of some classical theory of arithmetic. Let T be a classical theory in the language of arithmetic. We say K is locally T, iff for every k in K, Mk⊨T. One of the most important problems in the model theory of HA is the following question: Is every Kripke model of HA locally PA? We answer this question negatively. We introduce two new Kripke model constructions to this end. The first construction actually characterizes the arithmetical structures that can be the root of a Kripke model K⊩HA+ECT0 (ECT0 stands for Extended Church Thesis). The characterization says that for every arithmetical structure M, there exists a rooted Kripke model K⊩HA+ECT0 with the root r such that Mr=M iff M⊨ThΠ(PA). One of the consequences of this characterization is that there is a rooted Kripke model K⊩HA+ECT0 with the root r such that Mr⊭IΔ1 and hence K is not even locally IΔ1. The second Kripke model construction is an implicit way of doing the first construction which works for any reasonable consistent intuitionistic arithmetical theory T with a recursively enumerable set of axioms that has the existence property. We get a sufficient condition from this construction that describes when for an arithmetical structure M, there exists a rooted Kripke model K⊩T with the root r such that Mr=M. As applications of this sufficient condition, we construct two new Kripke models. The first one is a Kripke model K⊩HA+¬θ+MP (θ is an instance of ECT0 and MP is Markov's principle) which is not locally IΔ1. The second one is a Kripke model K⊩HA such that K forces exactly the sentences that are provable from HA, but it is not locally IΔ1. Also, we will prove that every countable Kripke model of intuitionistic first-order logic can be transformed into another Kripke model with the full infinite binary tree as the Kripke frame such that both Kripke models force the same sentences. So with the previous result, there is a binary Kripke model K of HA such that K is not locally IΔ1.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
1090-2082
Volume of the periodical
397
Issue of the periodical within the volume
March
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
108126
UT code for WoS article
000793112500025
EID of the result in the Scopus database
2-s2.0-85120862006