Affine structure on weil bundles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F00%3A00003543" target="_blank" >RIV/00216224:14310/00:00003543 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Affine structure on weil bundles
Original language description
Abstract. For every r-th order Weil functor T(A), we introduce the underliyng k-th order Weil functors T(Ak), k=1,...,r-1. We deduce that T(A)M -> T(Ar-1)M is an affine bundle for every manifold M. Generalizing the classical concept of contakt element byC. Ehresmann, we define the bundle of contact elements of type A on M and we describe some affine properties of this bundle.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F96%2F0079" target="_blank" >GA201/96/0079: Geometry of liber bundles</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nagoya Mathematical Journal
ISSN
0027-7630
e-ISSN
—
Volume of the periodical
1999
Issue of the periodical within the volume
158
Country of publishing house
DE - GERMANY
Number of pages
7
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—