All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High order congruences for M-ary partitions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489823" target="_blank" >RIV/00216208:11320/24:10489823 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CHfF~4V.dn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CHfF~4V.dn</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10998-024-00579-0" target="_blank" >10.1007/s10998-024-00579-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    High order congruences for M-ary partitions

  • Original language description

    or a sequence M = (m i )ooi=0 of integers such that m0 = 1, m i &gt;= 2 for i &gt;= 1, let p M (n)denote the number of partitions of n into parts of the form m0m1 . . . m r . In this paper weshow that for every positive integer n the following congruence is true:p M (m1m2 . . . m r n - 1) IDENTICAL TO 0(modrN-ARY PRODUCTt=2M(m t , t - 1)),where M(m, r) := mgcd(m,lcm(1,...,r)) . Our result answers a conjecture posed by Folsom,Homma, Ryu and Tong, and is a generalisation of the congruence relations for m-ary partitionsfound by Andrews, Gupta, and Rodseth and Sellers.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GM21-00420M" target="_blank" >GM21-00420M: Universal Quadratic Forms and Class Numbers</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Periodica mathematica Hungarica

  • ISSN

    0031-5303

  • e-ISSN

    1588-2829

  • Volume of the periodical

    89

  • Issue of the periodical within the volume

    14 June 2024

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    13

  • Pages from-to

    155-167

  • UT code for WoS article

    001256719900001

  • EID of the result in the Scopus database

    2-s2.0-85195866966