All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

THE LIFTING PROBLEM FOR UNIVERSAL QUADRATIC FORMS OVER SIMPLEST CUBIC FIELDS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489826" target="_blank" >RIV/00216208:11320/24:10489826 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21240/24:00377480

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o2TO-6PjmL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o2TO-6PjmL</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0004972723000953" target="_blank" >10.1017/S0004972723000953</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    THE LIFTING PROBLEM FOR UNIVERSAL QUADRATIC FORMS OVER SIMPLEST CUBIC FIELDS

  • Original language description

    The lifting problem for universal quadratic forms over a totally real number field K consists of determining the existence or otherwise of a quadratic form with integer coefficients (or Z-form) that is universal over K. We prove the nonexistence of universal Z-forms over simplest cubic fields for which the integer parameter is big enough. The monogenic case is already known. We prove the nonexistence in the nonmonogenic case by using the existence of a totally positive nonunit algebraic integer in K with minimal (codifferent) trace equal to one.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin of the Australian Mathematical Society

  • ISSN

    0004-9727

  • e-ISSN

    1755-1633

  • Volume of the periodical

    110

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    AU - AUSTRALIA

  • Number of pages

    13

  • Pages from-to

    77-89

  • UT code for WoS article

    001080165500001

  • EID of the result in the Scopus database

    2-s2.0-85174328680