THE LIFTING PROBLEM FOR UNIVERSAL QUADRATIC FORMS OVER SIMPLEST CUBIC FIELDS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489826" target="_blank" >RIV/00216208:11320/24:10489826 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/24:00377480
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o2TO-6PjmL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o2TO-6PjmL</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0004972723000953" target="_blank" >10.1017/S0004972723000953</a>
Alternative languages
Result language
angličtina
Original language name
THE LIFTING PROBLEM FOR UNIVERSAL QUADRATIC FORMS OVER SIMPLEST CUBIC FIELDS
Original language description
The lifting problem for universal quadratic forms over a totally real number field K consists of determining the existence or otherwise of a quadratic form with integer coefficients (or Z-form) that is universal over K. We prove the nonexistence of universal Z-forms over simplest cubic fields for which the integer parameter is big enough. The monogenic case is already known. We prove the nonexistence in the nonmonogenic case by using the existence of a totally positive nonunit algebraic integer in K with minimal (codifferent) trace equal to one.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the Australian Mathematical Society
ISSN
0004-9727
e-ISSN
1755-1633
Volume of the periodical
110
Issue of the periodical within the volume
1
Country of publishing house
AU - AUSTRALIA
Number of pages
13
Pages from-to
77-89
UT code for WoS article
001080165500001
EID of the result in the Scopus database
2-s2.0-85174328680